Machine Learning for Track Reconstruction at the LHC

Louis-Guillaume Gagnon

AI4EIC-Exp Workshop
2021/09/08

A BERKELEY LAB Berkeley

UNIVERSITY OF CALIFORNIA

1/20

Introduction: Particle Trajectory Reconstruction

» Particle trajectory reconstruction (Tracking) is
a clustering problem

» Given a set of points in 3D space (Hits),
cluster in sets which originate from the same
particles

» Hits correspond to signals from
subdetetectors
» Today, focus on silicon tracking detectors at
p—p colliders
» The small number of hits in a typical
reconstructed track compared to the total
number of hits in an event makes the problem
particularly challenging
» Most experiments in LHC setting use
variations of the Kalman Filter (KF) algorithm
to find and fit tracks

» ©Physics performance is excellent

» ®Runtime scales badly with Nyits [1904.0677]

2/20

https://arxiv.org/abs/1904.06778

Introduction: Towards the High-Luminosity LHC (HL-LHC)

LAS

3 RIMENT

HL-LHC ti event in ATLAS ITK
at <p>=200

» HL-LHC: Circa 2027, pileup increase to ~ 200
> ATLAS Run-2 had = 30

» KF-based methods runtime is > O(NZ,,,)
» Combinatorial explosion — runtime explosion

» Also: trigger rate increase, more readout
channels . ..

Run 3 (=55 Run 4 (1=88-140)

80F" ATLAS Preliminary |
2020 Computing Medel - CPU

‘o'
b4 o]
o L u
& 70E : =
3 F © Baseline o E
% 60 + Conservative R&D -
- F + Aggressive R&D e E
2 50— Sustained budget model =
g o (+10% +20% capacity/year) R AT A
F £ "]
E 40 & LHCC common scenario ;',rU -
8 F (Conservative R&D, u=200) 3 E
> sof =
5 Tk]
E] 20 s
£ E E
< =]
10 =
g @@ 3
o N P AP IR NI P B
02020 2022 2024 2026 2028 2030 2032 2034
Year

» Current budget prediction do not cover CPU

needs of current methods

» Need “Aggressive R&D": New and/or
improved methods

» More details in ATLAS computing CDR

3/20

https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

Introduction: Roadmap

A\

Where does Machine Learning (ML) fits into this problem?

v

Kalman Filter is currently still by far the best method available

v

Approach 1: Make the KF methods faster

v

Approach 2: Keep the current KF-based methods and use ML to control the combinatorics

v

Approach 3: Replace the KF altogether with more sophisticated ML
(so-called “end-to-end” methods)

4/20

Approach 1: Accelerated Kalman Filter

Trigger-level track finding on GPU with ALICE

» Track finding in the ALICE TPC at software trigger level has been ported to GPUs
» Tracklet finding with cellular automaton
» Track finding & fitting with simplified Kalman Filter

» One of the earliest successful use of GPU for tracking in a realistic setting!

Processing step

AMD Radeon 7

RTX 2080 Ti

Intel CPU

2080 Ti / CPU

Zero Suppression Decoding
Cluster Finding

Track Finding

Track Fit

Cluster Compression
Svnchronous Processing Total
dE /dz Caleulation
Asynchronous Processing Total

38 ms
8T ms
109 ms
284 ms
137 ms
657 ms
61 ms
304 ms

19 ms
79 ms
65 ms
243 ms
105 ms
o1l ms
22 ms
237 ms

986 ms
21343 ms
8759 ms
7204 ms
1452 ms
39816 ms
906 ms
13381 ns

52x
270x
135x
RIS
ldx
T8x
41x
Hbix

Table 1: Processing time of reconstruction steps on GPU and CPU. The CPU was measured on an Intel

CPU clocked at 4.5 GHz with the Skylake architecture (clock fixed, turbo disabled} on a single core.

» Total speedup for GPU is 56x!
» Connecting the dots 2020 paper

6/20

https://indico.cern.ch/event/831165/papers/3717100/files/9885-ctd2020.pdf

Kalman Filtering on the GPU

» The KF algorithm is fully expressible with linear algebra

» However, peculiarities of the algorithm makes it a challenge to efficiently code it on a GPU (e.g.
with CUDA)

> E.g. Matrix sizes are typically very small
> Ai et al, [2105.01796], explored two strategies

» Fitting many tracks in parallel (using CUDA threads or blocks)
> Additionally parallelizing single-track fits (Using CUDA threads)

~&— [Cori-Haswell] float operands
@ [Cori-Haswell] double operands
10% 4 _%- [CoriV100] float operands
% [CoriV100] double operands

10° { —§— Without intra-track parallelization »*
~%- with intra-track parallelization ’

102 4

Time[ms]
H
2
Time[ms]

101 Fw e

10! 102 10? 10* 10°

1 2 3 s s
The number of tracks 10 10 10 10 10

The number of tracks

» Scaling remains the same, but GPU

; e » Intra-track parallelization is mainly good for
implementation is faster for large datasets

smaller datasets
7/20

http://arxiv.org/abs/2105.01796

Approach 2: Strategic Use of Machine Learning

The TrackML challenge

» TrackML: Machine Learning competition
aiming to encourage development of fast and
high performance tracking methods by
leveraging ML expertise

» Split into two different stages:

» Accuracy phase: Hosted on Kaggle, aimed to
attain maximum physics performance

» Throughput phase: Hosted on Codalab,
aimed to attain maximum inference speed

» Main insight: Most winning methods leverage
“classical” track reconstruction techniques,
using ML at strategic points to control
combinatorics and increase performance

» Accuracy phase:
> Kaggle webpage
» Summary paper: [1904.06778]

» Throughput phase:
» Codalab webpage

» Summary paper: [2105.01160]

9/20

https://www.kaggle.com/c/trackml-particle-identification/overview
http://arxiv.org/abs/1904.06778
https://competitions.codalab.org/competitions/20112
http://arxiv.org/abs/2105.01160

TrackML Accuracy Phase Winner: " Top-Quarks”

» Modular algorithm, similar to “typical”
combinatorial KF pipelines (e.g. ATLAS):

1. Seeding: create pairs of seed with a pairwise

logistic regression model, using 50 different
layer pairings as input

2. Triplet formation: Extend the resulting
doublets to triplets and filter them with

another logistic regression model

3. Track following: Build tracks by helical
extrapolation

4. Ambiguity resolution: Simple cut on number
of wrongly associated hits (estimated from a
fit to data) “

» Logistic regression is leveraged to control the
combinatorics

» Dedicated data structures were developed to
allow an efficient implementation > W
» Code Repository:

github.com /top-quarks/top-quarks

10/20

http://arxiv.org/abs/1904.06778
https://github.com/top-quarks/top-quarks

TrackML Throughput Phase Winner: “Mikado”

>
>

vvyyvyy

Implemented by Sergey Gorbunov (Runner-up in accuracy phase)
Iterative track finding algorithm with 60 passes
» Earlier passes are very strict — high purity, low efficiency
» Later passes are progressively looser — combinatorics kept under control by earlier passes
Hits on every layer are quantized to a 2D grid
Tracklets are built by looking through layer- and pass-specific search windows
O(10*) parameters used to define fixed-size search windows
Parameters tuned with a fit to data

Fig. 7 Combinatorial Lay- Fig. 8 Tracklet prolongation

€rs

[2105.01160]

11/20

http://arxiv.org/abs/2105.01160

Approximate Nearest Neighbor Search

» Quickly lookup union of regions being

» Define a metric space (e.g. angular distance)
approximately closest to a query point

» Segment it in different regions, in O(log Nhits)

x x x * x »
x o o X gy
X X x
PR NPT L S
- ox P LA
% X T Rl
oo xwx we ax NS T
oo g0 % x,?":‘ [¥ x
bl | o
e *x e &*xat;‘wx x x
x
R X o B0 R X Xy *
2 L = ML U S
x .y K X x «
x oxx o XX X
x oxx o
HhE L« *x x
el
% L x Xy x
o X% X% g5 .
LR .
= X
% * XxgXx
. x
* x
-
M x *
xX x .
*
* xxl x’) x
wx H
x x ¥x x %
x ¥
X ox %
o«
%*
x x

12/20

source

Approximate Nearest Neighbor Search

Different approach to track reconstruction, by
Amrouche et al

Divide-and-conquer approach used to control
combinatorics

Use “Approximate nearest neighbor”
algorithms separate all hits in different regions

Tracking can then be performed separately in
each region

O(NZ,s) nature of tracking means that this
scales better than the global approach
Need to define a meaningful distance between
hits
» Can be as simple as the angular distance
between hits. ..
» .. .or as complex as a
learned embedding via neural network

time (s)

17.5
clustering on dataset

1500 —— clustering on hashes
12.5
10.0
7.5
5.0
25

00| —m

10 100 1000
Number of tracks

> [2101.06428]
» |EEE article
» Blog post by Sabrina Amrouche

2000

13/20

https://indico.cern.ch/event/831165/contributions/3717131/attachments/2024255/3385642/choma_ctd2020.pdf
https://arxiv.org/abs/2101.06428
https://doi.org/10.1109/BigData47090.2019.9006316
https://itnext.io/using-the-spotify-algorithm-to-find-high-energy-physics-particles-1c28f5f37650

Approach 3: End-to-end Machine Learning
Algorithms

Graph Neural Networks

» Graph Neural Networks (GNNs):
» Cast dataset as a set of nodes connect by
edges
» Both nodes and edges can have associated
values and labels
» GNN will do node and/or edge classification
» In context of track reconstruction:
» Nodes are naturally hits in a detector layer
» Edges connect hits together. “True” edge —
hits from a same particle

» The edge classification task is leveraged to
cluster hits into sets that are truly connected

» Example: Edge classification of San Francisco
Bay Area transit network stations

> source

15/20

https://drive.google.com/file/d/11NDxKukSEMRctrWFu3DV-UJHUJtrnsXs/view

Graph Neural Networks: the Exa.TrkX Pipeline

» Exa.TrkX is a DOE project aims to leverage

GNNs to form a complete track reconstruction 3 .
pipeline at the exascale IO S
.) H . .-“* CoetTVE ® Tr |'< ><

» Multi-stage algorithm that can be used for : S k

seed formation or complete track WTooosees - >

reconstruction
» Core GNN model is “Interaction Network”

[1612.00222] » Project webpage: exatrkx.github.io
» Project also aims to support parallelized » Performance paper: [2103.06995]

deployment on accelerated hardware such as » Code repository: github.com /exatrkx

GPUs and FPGAs

16/20

https://arxiv.org/abs/1612.00222
https://exatrkx.github.io/
https://arxiv.org/abs/2103.06995
https://github.com/exatrkx

Graph Neural Networks: the Exa.TrkX Pipeline

| —|

RS S T > 2

— | — T — ﬁ
preprocessed " i~ I‘ ! ool HJ—L ue |
Apply learned Classify doublets Classify triplets v v
embeddi i in GNN

ne in GNN " DBSCAN for track
. . . labels

Filter likely, adjacent Filter, convert to

N Apply cut for seeds

doublets triplets

[2103.06995]

1. Construct a metric space in which distance between hits correlates with track membership
— defines edges

2. Train an neural network to filter these edges to increase purity and make graph sparser
3. Core step: Use a GNN (interaction network) to classify edges

4. Post-processing, depending on the goal:

» Seeding: Using the resulting doublet graph, build triplets using likelihood methodx
» Track reconstruction: Partition the graph into connected components

17/20

https://arxiv.org/abs/2103.06995

300
1.00
PPPEE T S S S —
095
250
0.90 JRY S o o) g SEE— 0}
= [
Q 085 . E
a =
E 0.80 200
- =]
Sors =
®
": 0.70 150
0.65
060 100
Physics Eff
0.55 : o o o o o o
4 Technical Eff & & & & & &
3 0 & LS S ~
050 ~ ~
0 1 2 3 4 5 Number of spacepoints

pT [GeV]

» Good runtime scaling, albeit on a simplified

» Performance adequate for proof-of-concept
dataset (TrackML)

[2103.06995]

18/20

https://arxiv.org/abs/2103.06995

ACTS: A Common Tracking Software project

v

Experiment-independent toolkit for tracking
Free software (Mozilla Public License v2.0)

Considered for use by Belle I, CEPC,
sPHENIX, PANDA, FASER, ATLAS, EIC, ...

Three overarching goals:

1. Preserve current tracking approaches while
enabling development for HL-LHC

2. Serve as an algorithmic test bed incl.
ML-based algorithms and accelerated
hardware

3. Enable rapid and realistic development of
new tracking detectors

Includes an ONNX plugin, to enable import of
various ML models anywhere in the tracking
workflow

Ongoing R&D for GPU tracking (traccc)

. S
@
» Overview paper: [2106.13593]

» Project webpage: acts.readthedocs.io

» Code repository: github.com/acts-project/acts

19/20

https://onnx.ai/
https://github.com/acts-project/traccc
https://arxiv.org/abs/2106.13593
https://acts.readthedocs.io
https://github.com/acts-project/acts/

Conclusion

» Today: Only presented a small fraction of the total landscape of ML use in track reconstruction
» Using accelerated hardware to speed-up current KF-based algorithms
» Using ML at strategic points in track reconstruction algorithms
» Using ML at all stages to build an end-to-end pipeline

» My personal takeaways:

The Kalman Filter remains too powerful to completely throw away

ML techiques are extremely useful to avoid the dreaded combinatorial explosion
Many techniques, from logistic regression to graph neural networks, are promising
An optimal tracking pipeline should be very modular in design

Accelerated implementations could help bridge the remaining performance gap

vVVYYVY

» Eager to learn about more cutting edge methods?
» The accuracy and throughput trackML papers are highly recommended
» The Living Review of Machine Learning for Particle Physics contains a “Tracking” section

20/20

http://arxiv.org/abs/1904.06778
http://arxiv.org/abs/2105.01160
https://github.com/iml-wg/HEPML-LivingReview

BACKUP SLIDES

Parallelized track finding on CPU with CMS: Matriplex

» Most recent CPUs have broad support for vectorized math operations
» Matriplex: Memory layout for efficient use of vector units to perform small matrix operations

R1 _ MI(1,1) M(1,2) MI(1,N) M'(2,1) MI(N,N) M™i(1,1) M™1(1,2)
R2 _ M(1,1) M(1,2) M2(1,N) MY(2,1) MA(N,N) M1 1) M=2(1,2)
r | <z wan | s
vector unit

Matrix size NxN, vector unit size n

» From Connecting the dots 2019 talk

https://indico.cern.ch/event/742793/contributions/3298693/attachments/1823661/2983763/MkFit-CTD2019-Hall.pdf

Parallelized track finding on CPU with CMS: mkfit

» Matriplex + threading leveraged in the CMS mkfit framework for parallel track reconstruction

» github.com/trackreco/mkFit

Intel Xeon SKL

Speedup per event

» Good speedup seen for single events
» Up to 25x with event batching

09020 730 40" 50 60
Number of threads

00—---- - IR R
L T - CMSSW
E I
00 - MKkFit
0L :
s F . .
o - L] .
S300p - - -- - REEEEE REERRE ARERE
TR : ' : :
< [: :
200:—----: ----- ,'-_'_' SIEEEE
oo - L
: : : : ;
.-.u(‘.. L 1 L . 1
) o)
. @Q, o, ‘5% %,
{?ﬁ" 05{? Oé:" el
o Qp,

3/5

Code repository: https://github.com/trackreco/mkFit

Approximate Nearest Neighbor Search

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

4 5 6 7 8 O
Largest particle size in bucket

» Using dedicated learned metric space increases

the bucket quality

plots from IEEE article

mmm Traditional
[Metric Learn

0 011 12 13 14 15

Algorithm 1 Track finding with hashing

Input : List of hits H
Output: List of tracks T
Require: T+ findTracks(H)
Require: P + metricLearn(IT)
Require: ANN ¢ buildIndex(H, metric)
ANN + buildIndex(P,metric)
foundTracks + 0
while ¢ < Nqueries do
n + random()
buecket < AN N.query(n)
t « findTracks(bucket)
foundTracks i’
i i+ 1
end while
return foundlracks

4/5

https://doi.org/10.1109/BigData47090.2019.9006316

Example of ML R&D in ACTS: Ambiguity resolution

» Ambiguity resolution: Given a set of tracks, reject duplicate and fake tracks and keep only tracks
corresponding to a real particle

» Using the ACTS framework, a dataset comprising real and fake tracks is easily obtained

» Regular NN and/or Recurrent NN can be integrated in ACTS with ONNX

Confusion Matrix @ 0.50 - test set — Confusion Matrix, Normalized
(normalized to true labels)

10
good 0.051 0.013
08
good 0.018
= 06
_ k] 0.129 0796 0075
3 ‘o duplicate -
© c
< & 0s
3
=
fake 0.094 0.367 0.539 02
duplicate 0.426
00
:E‘ob \\d:’& @‘rz
> &
& \c""@ Predicted label
&
S

Predicted label » Extension to LSTM, using information about

hits shared by many tracks
» Earlier work by Irina Ene, grad student at UCB

» Work by Nupur Oza, IRIS-HEP fellow
» slides

5/5

https://indico.cern.ch/event/945364/contributions/3972551/attachments/2095760/3522537/IrinaEne-IRIS-HEP_topical_meeting_090220.pdf

	Appendix

